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ABSTRACT

We present a simple Budyko-Sellers type climate model which is forced by a heating term whose time
dependence is white noise and whose space-separated autocorrelation is independent of position and
orientation on the sphere (statistical homogeneity). .Such models with diffusive transport ar¢ analyti-
cally soluble by expansion into spherical harmonics. The modes are dynamically and statistically
independent. Each satisfies a simple Langevin equation having a scale-dependent characteristic time.
Climate anomalies in these models have an interval of predictability which can be explicitly computed.
The predictability interval is independent of the wavenumber spectrum of the forcing in this class of
models. We present the predictability rvesults for all scales and discuss the implications for more

realistic models.

1. Introduction

One of the most important problems of modern
climatology is the prediction of future climatic states
as they evolve from given initial conditions with the
external conditions held fixed or allowed to vary
seasonally. Because of instabilities in the at-
mospheric equations of motion, meaningful numeri-
cal predictions of the precise state of the at-
mosphere are limited theoretically to about 10 days
(Lorenz, 1969; Leith, 1971). Large scales of some
meteorological variables seem to have characteristic
times longer than this and may therefore constitute
a basis for predicting time-averaged and/or space-
averaged quantities for extended periods. So far no
limits have been established for climate prediction.

By climate we mean the multidimensional
probability distribution of states of the atmosphere-
ocean system. The climate is assumed to have a
probability distribution which is stationary. The
usual device borrowed from statistical mechanics
(Leith, 1975) of a fictitious ensemble of independent
states (planets) can then be employed for the pur-
pose of computing the moments of the probability
distribution. If we look at a certain subset of the
full ensemble (the subensemble) all of whose mem-
bers pass through a small neighborhood of some
given initial condition (anomaly), we can imagine
that this subset will eventually fill out the en-
semble probability distribution by ergodicity. But in
a small initial interval the probability distribution of
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the subensemble will be strongly influenced by the
initial conditions. For the interval during which it
differs significantly from the stationary distribution
we have predictability of the first kind as defined
by Lorenz (1975). Later in this section the concept
will be illustrated by example.

In this paper we present a highly idealized at-
mospheric model for the purpose of examining the
limits of predictability for the large scales of the
temperature field. The model is of the semi-
empirical type introduced by Budyko (1968, 1969)
and Sellers (1969), but forced by a whiie noise
heating term. Such systems can be adjusted to yield
fluctuations statistically similar to those observed
(Robock, 1978). Other energy balance models with
stochastic forcing have been studied by Lemke
(1977), Fraedrich (1978), and North et al. (1981).

The advantage of our model is its simplicity and
the fact that analytical methods can be used
throughout so that each assumption and simplifica-
tion can be examined explicitly. On the other hand,
the model lacks many features expected to be
important in the real geophysical system. Our
conclusions must be considered tentative at best
until similar work is done with more realistic
models. Still, we suspect that our quantitative re-
sults are. of practical importance.

Consider a meteorological field such as the sea
level air temperature. At a given time the field may
be expanded into spherical harmonics,

TGN =3 3 Tm®)¥FG),
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where F is a unit vector directed from the earth’s
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center to the point in question. The largest spatial
scales of the field are described by the first few
spherical harmonics having the lowest values of /.
The amplitudes T,,(7) of these large-scale features
have the longest characteristic times. These slow
large-scale features contribute a significant portion
of the total variance at a given point r. Clearly,
the ability to predict these low-/ amplitudes would
be of considerable importance. In this paper we
discuss the errors in forecasting these amplitudes,
starting from a well-defined initial state.

To illustrate the characteristic times involved in
atmospheric thermal adjustment, consider the global
mass-averaged temperature of a model atmosphere
whose surfaces carry no heat capacity. The
simplified general circulation model studied by
Manabe and Wetherald (1975) and Wetherald and
Manabe (1975) is such a model. In their numerical
experiments they started with initial conditions far
from equilibrium. The global temperature relaxed
toward a steady state in an exponential-like fashion.
The time constant for this thermal relaxation is
~50 days. This interval characteristic of the at-
mosphere alone is what motivated us to undertake
a study of predictability of the thermal field. Note
that this value seems considerably larger than the
autocorrelation time of the pressure at a point
(~3 days), (Leith, 1973), or the ‘‘spin-down time’’
of a cyclone (~4 days) (Holton, 1979).

This long characteristic time for the large-scale
thermal field suggests that the collective effect of
short-term weather fluctuations (eddies, cloudiness,
etc.) may be treated as a random white-noise forc-
ing. The statistical method of treating the response
to such rapidly varying forces was provided more
than 40 years ago in connection with Brownian
motion (cf. Wax, 1954). Its relevance to climate
was suggested by Mitchell (1966) in connection with
sea-surface temperature anomalies. It was given a
general formulation by Hasselmann (1976), who
emphasized the role of negative feedback processes
in limiting climatic variability. The hope is that
even though we are unable to compute the evolution
of individual eddies and cloud systems in detail, the
thermal field may have a degree of predictability
even if these less predictable components are
replaced by a white noise.

In the remainder of this section we illustrate the
predictability problem by considering first a simple
model for the global temperature, T, in Eq. (1).
The characteristic time for the decay of a global
temperature anomaly is determined by the ratio of
the associated heat storage to the radiative loss rate.
We shall see that the uncertainty due to the random
forcing grows to saturation in a time less than the
decay time of the anomaly. In Section 2, we con-
sider a space dependent Budyko-Sellers model
driven by a stochastic forcing term. The model is
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analytically soluble for all the higher modes, the
Ti» in Eq. (1). In this case some information on
the spatial properties of the white noise forcing is
required, and for simplicity we assume statistical
homogeneity. That is, we assume that the forcing at
a given point on the sphere is correlated with the
forcing at other points by an amount dependent only
upon the great circle distance separating the two
points. The functional form of the correlation func-
tion itself need not be specified, since our main
results do not depend on it. Using a theorem
originally proven by Obukhov (1947) and reviewed
here in the Appendix, we show in Section 2 that the
T,, are statistically uncorrelated in our homo-
geneous model, and each one behaves in complete
analogy to the global mode, but with a characteristic
time decreasing rapidly as the spatial scale de-
creases. Hence the one-mode model serves as a
prototype for the more general case to follow.

The departure from steady state in a globally av-
eraged model is described by the equation

dTy' (1)

C —/—~ + BT,/(t) =0, )
dt

where the 0 denotes global average, the prime de-
notes departure from steady state, C is the effective
heat capacity per unit area of the earth-atmosphere
system, and B is an empirical coefficient taken from
the Budyko (1968, 1969) infrared terrestrial radiation
rule

I =A + BT, 3)

where [ is infrared flux (W m™2) and T local sea-
level temperature (°C). North and Coakley (1979)
found B = 2.09 W m~2 K~! from satellite data. If one
takes C to be the heat capacity of a column of air
at constant pressure (~107 J m~2 K1), then the re-
laxation time for T, in Eq. (2) is

T = Car _ 58 days. )
B

Of course, the parameterization (3) is very crude
and different authors have estimated values for B
tens of percent different from our value, depending
upon the data used and other assumptions em-
ployed; however, for the present purposes this esti-
mate will be adequate (cf. North ez al. (1981) for a
discussion).

If the column of earth-atmosphere is situated over
ocean, the heat capacity of the wind-driven mixed-
layer will dominate over that of the column of air.
In this case we must use Cjxeq = 3.14 X 108 I m~2
K~! for a 75 m mixed layer and we obtain for the
relaxation time (Schneider and Mass, 1975)

Cri
T ixed = ——’;‘—ed ~ 4.8 years.
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Of course, in this case we have completely neglected
the dynamics of the mixed layer, considering it to be
a perfect heat conductor. These simplifications
surely would not suffice in a detailed model, but
seem adequate to account for the amplitude and lag
of the zonally averaged seasonal cycle in energy-
balance models of the planetary scale (North and
Coakley, 1979). Roughly the same relaxation time
(few years) was found by Manabe and Stouffer
(1980) in a seasonal general circulation model of the
atmosphere which is coupled to a similar non-
dynamic mixed layer ocean.

Yet another characteristic time involves the
relaxation time for an atmospheric column attached
to an ocean with a given fixed temperature (a
common GCM configuration). Heat exchange with
the ocean might be schematically modeled by a
Newtonian cooling law leading us again to (2) but

the new effective value of B is increased due to the A

oceanic heat exchange. We would be lead to relaxa-
tion times considerably less than (4). We shall not
explore this interesting possibility here, but we
suspect that it may be closest to reality especially
in view of the shorter (5—15 days) relaxation times
found by Lorenz (1973) with real data.

Consider now a global model governed by the
dynamical equation (2), but subject to a stochastic
forcing F(r), whose average is zero. The noise
term is white, that is, its autocorrelation interval
is very small compared to the characteristic time of
the climate variable, 7*. The model is governed by

d1(z) + T(1) _ F, ©)
a7
where the stochastic force satisfies
(F(1)) =0, (7a)
(F(OF(t')) =f28(t - t"). (7b)

Angular brackets indicate ensemble averages and
& is the Dirac delta function. Now we imagine an
experiment in which T is displaced (or found to be
displaced) from its steady state value (zero, since
T is the departure only). This anomaly will tend
to decay in a characteristic time 7* except erratically
because of the random forcing F(¢). Another similar
experiment will lead to a similar decay, but the de-
tails will be different because F(r) will present a
different time series in the second realization. -In
order to make an optimum prediction of the evolu-
tion of T we consider a subensemble of experi-
ments and compute the subensemble average of T
denoted by (T). Since the subensemble average of
F(¢) vanishes, we can average (6) to obtain

dT) (1) _
dt T*

which is equivalent to (2). In other words our best

“+
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prediction is that the anomaly will decay exponen-
tially in a characteristic time 7*.

Our prediction will only be useful, however, if the .
individual experiments do not differ too much from
the average. Deviation from this subensemble mean
can be considered noise which contaminates the
prediction. If we define the noise to be the rms
deviation from the subensemble mean, then a con-
venient measure of our prediction’s value will be the
signal (size of anomaly) to noise (rms deviation of
individual runs) ratio. When this ratio falls below

-unity we shall arbitrarily say that the predictability

interval ends. The rms deviation from the mean,
defined as .

N = (T - (T)))™ ®

may be determined from (6) and (7) by standard
techniques (Papoulis, 1965). The result is

N(t) = N.[1 — exp(—2t/r%)]'2, (10)

where

N., = f(*/2)22. (11)
The temperature variance, given by the square of
N, is initially zero, since all members of the sub-
ensemble have the same initial condition. It grows
to within e™! of its asymptotic level NZ in half the
decay time of (7). Taking the square root gives an
even faster saturation for N itself.

Fig. 1 shows the exponential solution to Eq. (8)
with error bars indicating the rms deviation of the
ensemble members as calculated from Eq. (10). This
particular example is for an initial value of the
anomaly equal to twice the asymptotic noise level
N.. The abscissa is in units of the system relaxa-
tion time 7*, while the ordinate is in units of the
asymptotic noise level. This choice of units is con-
venient since the level of the forcing noise does not
need to be expressed. The predictability interval
7p ends when the error bar just touches the hori-
zontal axis. We call attention to the rapid growth of
noise for small 7.

Fig. 2 shows 12 separate numerical solutions to
Eq. (6) for the same initial condition as in Fig. 1,
twice the asymptotic noise level. This figure gives
an idea of how the probability distribution is filled
out by the individual realizations in the suben-
semble. Figs. 3 and 4 also show the theoretical
mean and 12 separate solutions to Eq. (6), except
that the initial anomaly is 20N... Note that in this
(ridiculously) extreme case the predictability inter-
val is only increased by a factor of order three,
indicative of the logarithmic dependence of 7,
upon 7(0). Fig. 5 shows a graph of the predictability
interval versus the initial anomaly size.

The exponential decay of the subensemble mean
to the stationary ensemble mean is characteristic of a
first order autoregressive statistical predictor model.
It has been called damped persistence by Lorenz
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F1G. 1. The relaxation of the ensemble average of a thermal anomaly (T) described in
units of the asymptotic noise level N.. Each ensemble member is assumed to start at
2N. in this case. The time scale is in units of the characteristic relaxation time for the
variable 7*. The error bars are the rms deviation for an ensemble of such runs [cf. Egs. 8)-(11)].

(1973). In that paper Lorenz showed that a small fields for up to 15 days. For the simple dynamical
but statistically significant amount of predictability model presented in the present paper, damped per-
existed in certain observed large-scale thermal sistenceis the exact analytical solution to the model.

SAMPLE ANOMALIES {UNIT = N,)

3 | : ! | 1

0.0 05 1.0 1.5 20 25 3.0
TIME (UNIT = %)

F1G. 2. Twelve separate realizations of anomalies computed numerically from Eq. (6).
These graphs indicate how the (normal) probability distribution, whose instantaneous
mean and width are shown in Fig. 1, is filled out by individual runs.
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25

Neo)

MEAN ANOMALY (UNIT

15 20 25 3.0

TIME (UNIT = T*)

FiG. 3. As in Fig. 1 except that the initial anomaly is 20N, (absurdly large).

The system (6) is so simple that elementary
methods can be used to analyze the subensemble
probability distribution, P(T, ¢). Since F(¢)is a white
noise input, it follows from the Central Limit
"Theorem that P(T, t) is Gaussian in T for each ¢.
Att = 0, the distribution is the Dirac delta function,

o(T — T,.y). As t increases the peak broadens and
shifts toward T = 0, the standard deviation ap-
proaching N,. P(T, =) is the stationary ensemble
probability distribution. In more complicated cases
such as that in which the left-hand side of (6) is
nonlinear, one would have to solve the Fokker-

25

Noo)

SAMPLE ANOMALIES (UNIT

5 1 1

00 . 05 1.0

15 20 25 3.0

TIME (UNIT = 1*)

Fi1G. 4. As in Fig. 2 exceﬁt that the initial anomaly is 20N ..
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FiG. 5. The predictability interval 7, in units of the relaxation time 7* as a function of
the size of the initial anomaly in units of the asymptotic noise level N... The slow growth
of 7, for large T(0) is logarithmic, i.e., ¥ In[1 + T(0)’].

Planck equation for the evolution of P(T, 1) (cf. re-
view by Haken, 1975; or Hasselmann, 1976).
Through such a framework one might study pre-
dictability in more general cases involving multiple
equilibria [multimodal P(T)].

In the next section we introduce the space-
dependent model which can be used to study pre-
dictability as a function of scale size. The model
may be considered a one- or two-dimensional
stochastically driven energy-balance model (Budyko,
1968; 1969; Sellers, 1969). It is completely solvable
analytically by elementary methods.

2. A soluble scale-dependent model

Consider the energy-balance climate model
(North, 1975) defined by the equation

oT
C > (, 1) — R2DV*T(¢, 1) + A + BI(r, t)

= 0S@a@. (12)

The terms in this equation are familiar to many
readers. The first term is heat storage with T(F, )
the sea level temperature at surface position f:
C is the heat capacity per unit area; the second
term represents horizontal diffusion of all forms of
heat, R the earth’s radius, D a constant, and the
next two terms represent the Budyko infrared
radiation rule; the right-hand side represents absorp-

tion of solar radiation, where Q is one-fourth of the
solar constant, S(+) mean annual distribution of
radiation at point £, and a(f) the coalbedo. The
ice-cap albedo feedback mechanism is ignored in
this paper.

We wish to modify (12) by adding a stochastic
forcing term to its right-hand side. Such a term might
arise from any of several causes such as eddy
transport fluctuations, stormy bursts of latent heat,
flickering cloudiness variables, etc. Most of these
effects are of a shorter time scale (days) than the
response time C/B of the largest scales of the
temperature field (50 days). So for simplicity we shall
neglect the autocorrelation time of the forcing,
and take it to be represented by white noise. In
addition we shall simplify the spatial dependence by
assuming that the forcing is statistically homo-
geneous on the sphere. In what follows let T(F, ¢)
denote the deviation from the mean field T°(f) which
satisfies the time-dependent version of (12). Each
realization of the stochastic field T(r, ) then satisfies

oT R2
O n-2
or

VIT(, t) + % T(t,t) =F(r,t). (13)

F(t, ) is a stochastic field whose statistics are
homogeneous on the sphere and whose temporal
spectrum is white. That is, the correlation of F with
itself at different times ¢ and ¢’ and points  and
' vanishes unless ¢ = ¢’ and depends only upon the
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TWO-DIMENSIONAL SPHERICAL WAVENUMBER £

F1G. 6. Relaxation time 7} for a particular mode as function of Legendre index /. Since
7} is scaled by the heat capacity per unit area we show two scales for the ordinate: on the
left is depicted time scales for an air only model whose surface contributes no heat
capacity; on the right we show time units corresponding to a2 75 m deep mixed-layer ocean.
Earth is, of course, a mixture of these two extremes.

great circle distance between the points:
(F@E, DF@®', t')) = fPp@-#)8(t — t'). (14)

According to a theorem by Obukhov (1947), dis-
cussed in the Appendix, the empirical orthogonal
functions (EOF’s) for such a field are the spherical
harmonics. That is, taking

(F@, ) =0, (15)

we may expand F in terms of spherical harmonics
Y" as

F(¢, 1) = 2 Fin(OYP(#), (16)
l,m
and the wavenumber amplitudes F,, satisfy
. (Fl_m(t)Fl’m'(t,» = lzall'amm’s(t ~t'), an

so that different wavenumbers are uncorrelated in
this basis.

The wavenumber spectrum f} is the Fourier-
Legendre transform of the autocovariance of F at
different separations (A10). It would be nearly
constant if neighboring points were uncorrelated.
However, we emphasize that the results below hold
irrespective of the wavenumber dependence of the
forcing. By inserting the expansions (1), (16)into (13)
and projecting the mode amplitudes we obtain

dTlm(t) Tlm(t)
+ = Fp,(1), 18
dl Tl* lm() ( )
where
T = —C . (19)
A I(l+ 1)D +B

Since the Y(¢) are the eigenfunctions of V2 and
the EOF’s of F(f, ¢), we have the remarkable prop-
erty that the equations (18) for each /, m are not
only dynamically uncoupled but statistically uncor-
related. It follows immediately that the T,,(t) are
uncorrelated for different I, m:

(Tim(OTpmA(t'))
= Niexp(—|t — t' |/r;k)8,,,a,,,,,,, (20)

where N, = f,(7}/2)"? is the asymiptotic noise level
of mode /. From the converse of Obukhov’s theorem
it follows that the statistics of T(¢, ) are homo-
geneous on the sphere.

Now we note that each member of the uncoupled
set (18) is formally equivalent to the zero-dimen-
sional prototype studied earlier, (6), except that the
characteristic time depends upon the scale index
[ through (19). Note that 7§ = v* = C/B of (6) for
the global average mode. The analysis of the
introductory section suffices to understand the
predictability for all scales in this model.

- By taking a value of D from the energy-balance
model results (North and Coakley, 1979) equal to
0.30 B = 0.618 W m™2 K™, we may estimate 7} for
the air-only model with r§ = 58 days, Eq. (4), or
the mixed layer model, with 7§ = 4.8 years, Eq.
(5). Fig. (6) shows the result for each case as a func-
tion of scale index /. The real earth is somewhere
between these, since 30% of the surface area is
land. We wish to especially call attention to the

_ rapid decrease of 7 with scale index /. For refer-

ence it might be noted that synoptic scales (~1000
km) cannot be resolved for / < 12.
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The above constitutes an analysis of the pre-
dictability interval for any scale [ for this simple
model. It is remarkable that the theory is inde-
pendent of the spatial spectrum f;* of the forcing
noise, [cf. Appendix (A9)]. Since each mode is
independent of every other dynamically (because of
diffusive transport) and statistically (because of
homogeneous noise forcing), the predictability inter-
val depends only upon the autocorrelation interval
71 for that mode and very weakly upon the size of
the initial anomaly expressed in units of the sta-
tionary ensemble standard deviation, N,.. The wave-
number spectrum of the forcing f;>2 expresses the
relative power (variance associated with the forcing
of each mode). Since the modes are uncoupled the
relative power in each mode does not affect the
predictability in other modes. The forcing noise
power in a given mode does, of course, determine
the steady state ensemble variance, N, in the par-
ticular mode, and the predictability in that mode
does depend weakly upon the size of the initial
anomaly expressed in units of N, as depicted in
Fig. 5. Ideally, N, is a directly observable quantity
for the real climate so that f;> need not be known
explicitly. If either the diffusive transport or the
homogeneous noise forcing assumptions are relaxed
the predictability would depend upon the wave-
number spectrum of the forcing; i.e., the pre-
dictability of one mode would depend upon the
forcing power and time constants from other modes.
In the real world, of course, both assumptions
are violated so that the modes are coupled. We
conjecture that our conclusions are not drastically
altered by the errors introduced by these simplify-
ing assumptions.

3. Discussion

Before drawing conclusions about this work it is
well to recall the model’s position in the hierarchy
of climate models. The energy-balance models are
among the most primitive approaches (Schneider
and Dickinson, 1974; Saltzman, 1978), and many
authors have cautioned that the numerical results
should not be applied willy-nilly (Coakley and
Wielicki, 1979; Warren and Schneider 1979; North
etal., 1981). Our model is even crude by these stand-
ards since new simplifications are introduced as
mathematical or pedagogical conveniences. Little
attempt has been made even to tune the model as
is the accepted practice in sensitivity studies. Still
the results are so striking that it seems compelling
to ask about their applicability to numerical
forecasting.

The interpretation to the solution of our model is
simply stated: the present models under considera-
tion which lack surface heat storage do not have
predictability intervals beyond a few days for
!l >4, A crude mixed layer may increase the
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interval by a factor of 10. For the mixed-layer
model the predictability interval for an anomaly of
twice the noise level at! = 12 is two weeks. ([ = 12
corresponds to a wavelength of ~1000 km). We
believe this result reinforces the broadly held belief
that coupled ocean models will be essential to
progress in numerical climate prediction.

But how realistic are the numerical values we
obtained? We feel that some of our approximations,
though seemingly unmeteorologically motivated,
probably do not lead to serious errors. For example,
using a more general linear operator than simple
diffusion for transport should lead to a sequence
of relaxation times (eigenvalues) for the new modes
(eigenfunctions) not extremely different from those
used here. Indeed serious is the possibility that
diffusion simply is a useless parameterization on
the smaller scales (Lorenz, 1979). The use of homo-
geneous noise forcing is not a serious drawback
since more general cases can be solved (North
et al., 1981) with results indicating a mixing of the
characteristic times rather than a tendency to
lengthen them for large /. Probably more serious
is application of Budyko’s radiation rule (3) to the
smaller scales where it has not been tested.

The most glaring shortcoming of our model is its
lack of internal nonlinear dynamics. This effect has
been partially taken into account by the noise
forcing and the linear transport operator; however,
no linear operator will have the important property
of transporting error energy systematically from
one scale to another as is so characteristic of fluid
motions. Therefore, such forms of error growth
omitted in our model may tend to limit predictability
even more than in the simple linear system. On the
other hand, the effects of fluctuations in higher
wavenumbers are not felt strictly as white noise but
rather a longer time scale forcing is felt from
neighboring modes—our separation of ‘‘weather”’
and ‘‘climate’” fluctuations being somewhat con-
trived. In fact, this red noise forcing (coupling to
other modes with comparable time constants) may
have a significant part of its variance predictable.
Still some parts of the forcing to the thermo-
dynamic equation may be taken as white noise be-
cause of the lack of predictability of such guantities
as cloudiness fluctuations. One might expect that
strictly deterministic nonlinear models might have
longer predictability times than damped persistence
models. Our goal has been to explore the possible
lower limits of predictability under certain simplify-
ing assumptions. The present analysis does suggest
that some basis functions might be better than
others as tools in the damped persistence prediction
framework.

Finally, we should not fail to mention the interest-
ing possibility that aspects of the atmospheric flow
such as long waves interacting with geographical
features may have long lifetimes comparable to the
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thermal relaxation time exploited in the present
study. One analysis suggests that these anomalies
might be associated with multiple equilibria (Charney
and Devore, 1979). It will be necessary to study
realistic nonlinear initial value models to explore
predictability limits in these cases. Still we feel
that our strictly thermal results can be used as a
reference in these future efforts.
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APPENDIX
Noise on a Sphere

Consider a random scalar field F(¢) defined on a
sphere (f is a unit vector directed from the center
to a point on the surface). The field may be expanded
into a series of orthonormal functions g,(f):

F£) = Y Fog.(b), (AD)
n

where the F, are random variables, taken here to

have ensemble average zero. In general the F, are

cross correlated, i.e.,

(FyFp) # Fy8um, (A2)

where angle braces represent ensemble averages.
However, since the covariance matrix is symmetric,
there exists a linear (orthogonal) transformation U .,
which will render the covariance matrix diagonal:

Fy =S UpnFn, (A3)
gu® = 3 Unngn(®), (Ad)
U =U", (AS)

The g,(¢) are called empirical orthogonal functions
(EOF’s); they represent spatial patterns on the
sphere which are statistically independent of one
another (e.g., Davis, 1976).

We now recall the theorem of Obukhov (1947)
which states: If F(f) is a ranidom field defined on
the sphere and it is statistically homogeneous,
that is,

(F®OFE)) = p@-#"), (A7)
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then the EOF’s are the spherical harmonics. Fur-
thermore, the coefficients in the expansion

o i
FE) =% ¥ FinYl'® (A8)
=0 m=—1

satisfy
<Fl>‘;nFl'm'> = 0-128lt’6mm'- (A9)

Conversely, if (A7) and (A8) are satisfied, F(f) is

“homogeneous.

Proof of the theorem is by straightforward con-
struction of the covariance matrix (A2) and use of
the addition theorem for spherical harmonics. The
theorem is hardly a surprise since ordinary spectral
analysis is analogously derived for systems with time
translation invariance (stationarity). In that case the
Fourier basis is the appropriate EOF set in time
(Jenkins and Watts, 1968). Similarly in problems
which are homogeneous in flat two- or three-dimen-
sional space the appropriate EQF set is the trigono-
metric (Fourier) basis. Similarly, the trigonometric
basis serves for homogeneous noise on a circle. An
example is the wavenumber analysis familiar from
homogeneous turbulence theory (Batchelor, 1959).

Still unspecified by the condition of homogeneity
is the spectrum o2, which is given by

of =2x Jl p(x)P(x)dx, _(A10)

where p(x) = p(f-t')is the autocovariance between
F@{) and F(t'), (A7), and Py(x) is the Legendre
polynomial. A spatial white noise field p(-#')
o 8(f — ') would lead to /% independent of , a flat
spectrum. Whereas spatial ‘‘red noise’’ fields which
have a finite autocorrelation length on the sphere
would have a spectrum o> which cuts off at a
characteristic value I/, which is in inverse propor-
tion to the autocorrelation length.
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